A Successive Underestimation Method for Concave Minimization Problems

نویسندگان

  • James E. Falk
  • Karla R. Hoffman
چکیده

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. INFORMS is collaborating with JSTOR to digitize, preserve and extend access to Mathematics of Operations Research. A new method designed to globally minimize concave functions over linear polyhedra is described. Properties of the method are discussed, an example problem is solved, and computational considerations are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Minimization via Piecewise-Linear Underestimation

Given a function on Rn with many multiple local minima we approximate it from below, via concave minimization, with a piecewise-linear convex function by using sample points from the given function. The piecewise-linear function is then minimized using a single linear program to obtain an approximation to the global minimum of the original function. Successive shrinking of the original search r...

متن کامل

Machine Learning via Polyhedral Concave Minimization

Two fundamental problems of machine learning misclassi cation minimization and feature selection are formulated as the minimization of a concave function on a polyhedral set Other formulations of these problems utilize linear programs with equilibrium constraints which are generally intractable In contrast for the proposed concave minimization formulation a successive linearization algorithm wi...

متن کامل

Canonical Primal-Dual Method for Solving Non-convex Minimization Problems

A new primal-dual algorithm is presented for solving a class of non-convex minimization problems. This algorithm is based on canonical duality theory such that the original non-convex minimization problem is first reformulated as a convex-concave saddle point optimization problem, which is then solved by a quadratically perturbed primal-dual method. Numerical examples are illustrated. Comparing...

متن کامل

Absolute value equation solution via concave minimization

The NP-hard absolute value equation (AVE) Ax − |x| = b where A ∈ R and b ∈ Rn is solved by a succession of linear programs. The linear programs arise from a reformulation of the AVE as the minimization of a piecewise-linear concave function on a polyhedral set and solving the latter by successive linearization. A simple MATLAB implementation of the successive linearization algorithm solved 100 ...

متن کامل

A convexification method for a class of global optimization problems with applications to reliability optimization

A convexification method is proposed for solving a class of global optimization problems with certain monotone properties. It is shown that this class of problems can be transformed into equivalent concave minimization problems using the proposed convexification schemes. An outer approximation method can then be used to find the global solution of the transformed problem. Applications to mixed-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Oper. Res.

دوره 1  شماره 

صفحات  -

تاریخ انتشار 1976